Scattering of a TM Wave from a Periodic Surface with Finite Extent: Undersampling Approximation

نویسندگان

  • Junichi Nakayama
  • Yasuhiko Tamura
چکیده

This paper deals with the scattering of a TM plane wave from a perfectly conductive sinusoidal surface with finite extent. For comparison, however, we briefly discuss the diffraction by the sinusoidal surface with infinite extent, where we use the concept of the total diffraction cross section per unit surface introduced previously. To solve a case where the sinusoidal corrugation width is much wider than wave length, we propose an undersampling approximation as a new numerical technique. For a small rough case, the total scattering cross section is calculated against the angle of incidence for several different corrugation widths. Then we find remarkable results, which are roughly summarized as follows. When the angle of incidence is apparently different from critical angles and diffraction beams are all scattered into non-grazing directions, the total scattering cross section increases proportional to the corrugation width and hence the total scattering cross section per unit surface (the ratio of the total scattering cross section to the corrugation width) becomes almost constant, which is nearly equal to the total diffraction cross section per unit surface in case of the sinusoidal surface with infinite extent. When the angle of incidence is critical and one of the diffraction beams is scattered into a grazing direction, the total scattering cross section per unit surface strongly depends on the corrugation width and approximately approaches to the total diffraction cross section per unit surface as the corrugation width gets wide. key words: numerical analysis, undersampling, Wood’s anomaly, total scattering cross section, multiple scattering

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Scattering of a TM Plane Wave from a Periodic Surface with Finite Extent: Perturbation Solution

This paper studies the scattering of a TM plane wave from a perfectly conductive sinusoidal surface with finite extent by the small perturbation method. We obtain the first and second order perturbed solutions explicitly, in terms of which the differential scattering cross section and the total scattering cross section per unit surface are calculated and are illustrated in figures. By compariso...

متن کامل

Simulation of Surface Plasmon Excitation in a Plasmonic Nano-Wire Using Surface Integral Equations

In this paper, scattering of a plane and monochromatic electromagnetic wave from a nano-wire is simulated using surface integral equations. First, integral equationsgoverning unknown fields on the surface is obtained based on Stratton-Cho surface integral equations. Then, the interaction of the wave with a non-plasmonic as well as a palsmonic nano-wire is considered. It is shown that in scatter...

متن کامل

Transmission and Reflection Characteristics of a Concrete Block Wall Illuminated by a TM-polarized Obliquely incident wave

Typically, many of the modern buildings have concrete walls constructed from cinder block walls, that have periodic nature in their relative dielectric constant. This periodic nature excites higher-order Floquet harmonic modes at microwave frequencies, which leads to the propagation of scattered waves along with non-specular directions. Periodic structures exhibit different behaviors when illum...

متن کامل

Sea Surfaces Scattering by Multi-Order Small-Slope Approximation: a Monte-Carlo and Analytical Comparison

L-band electromagnetic scattering from two-dimensional random rough sea surfaces are calculated by first- and second-order Small-Slope Approximation (SSA1, 2) methods. Both analytical and numerical computations are utilized to calculate incoherent normalized radar cross-section (NRCS) in mono- and bi-static cases. For evaluating inverse Fourier transform, inverse fast Fourier transform (IFFT) i...

متن کامل

Analytical Analysis of The Dual-phase-lag Heat Transfer Equation in a Finite Slab with Periodic Surface Heat Flux (RESEARCH NOTE)

This work uses the dual-phase-lag (DPL) model of heat conduction to demonstrate the effect of temperature gradient relaxation time on the result of non-Fourier hyperbolic conduction in a finite slab subjected to a periodic thermal disturbance. DPL model combines the wave features of hyperbolic conduction with a diffusion-like feature of the evidence not captured by the hyperbolic case. For the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEICE Transactions

دوره 90-C  شماره 

صفحات  -

تاریخ انتشار 2007